首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9037篇
  免费   1246篇
  国内免费   3022篇
  2024年   16篇
  2023年   313篇
  2022年   304篇
  2021年   425篇
  2020年   435篇
  2019年   502篇
  2018年   489篇
  2017年   501篇
  2016年   493篇
  2015年   435篇
  2014年   506篇
  2013年   696篇
  2012年   435篇
  2011年   541篇
  2010年   433篇
  2009年   530篇
  2008年   547篇
  2007年   601篇
  2006年   649篇
  2005年   501篇
  2004年   419篇
  2003年   396篇
  2002年   318篇
  2001年   292篇
  2000年   261篇
  1999年   232篇
  1998年   212篇
  1997年   191篇
  1996年   172篇
  1995年   159篇
  1994年   142篇
  1993年   137篇
  1992年   125篇
  1991年   118篇
  1990年   88篇
  1989年   64篇
  1988年   44篇
  1987年   66篇
  1986年   69篇
  1985年   81篇
  1984年   78篇
  1983年   43篇
  1982年   70篇
  1981年   42篇
  1980年   48篇
  1979年   46篇
  1978年   7篇
  1977年   9篇
  1976年   6篇
  1971年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
12.
Understanding ectomycorrhizal fungal (EMF) community structure is limited by a lack of taxonomic resolution and autecological information. Rhizopogon vesiculosus and Rhizopogon vinicolor (Basidiomycota) are morphologically and genetically related species. They are dominant members of interior Douglas‐fir (Pseudotsuga menziesii var. glauca) EMF communities, but mechanisms leading to their coexistence are unknown. We investigated the microsite associations and foraging strategy of individual R. vesiculosus and R. vinicolor genets. Mycelia spatial patterns, pervasiveness and root colonization patterns of fungal genets were compared between Rhizopogon species and between xeric and mesic soil moisture regimes. Rhizopogon spp. mycelia were systematically excavated from the soil and identified using microsatellite DNA markers. Rhizopogon vesiculosus mycelia occurred at greater depth, were more spatially pervasive, and colonized more tree roots than R. vinicolor mycelia. Both species were frequently encountered in organic layers and between the interface of organic and mineral horizons. They were particularly abundant within microsites associated with soil moisture retention. The occurrence of R. vesiculosus shifted in the presence of R. vinicolor towards mineral soil horizons, where R. vinicolor was mostly absent. This suggests that competition and foraging strategy may contribute towards the vertical partitioning observed between these species. Rhizopogon vesiculosus and R. vinicolor mycelia systems occurred at greater mean depths and were more pervasive in mesic plots compared with xeric plots. The spatial continuity and number of trees colonized by genets of each species did not significantly differ between soil moisture regimes.  相似文献   
13.
14.
The estimation of soil moisture by using the backscattering coefficient of radar in a mountainous region is a challenging task due to the complex topography, which impacts the distribution of soil moisture and changes the backscattering coefficient. Complicated terrain can disturb empirical moisture estimation models, thereby, the resulting estimates of soil moisture are very unlikely reliable. This article proposed an innovative way of integration of the topographic wetness index (TWI) and the backscattering coefficient of soil obtained from the TerraSAR-X image, which improves the accuracy of measurement of the soil moisture. The standard estimation error and the coefficient of determination from the model were used to evaluate the performance of TWI. Our results show that the standard estimation error was decreased from: (1) 4.0% to 3.3% cm3 cm−3 at a depth of 5 cm and (2) 4.5% to 3.9% cm3 cm−3 at a depth of 10 cm. The most reliable estimation was observed at a depth of 5 cm, when it was compared with those of 0–5 cm, 10 cm and 15 cm. The TWI from the digital elevation model (DEM) is useful as a constraint condition for modeling work. This article concludes that the integration of the backscattering coefficient of soil with TWI can significantly reduce the uncertainty in the estimation of soil moisture in a mountainous region.  相似文献   
15.
Species richness in the alpine zone varies dramatically when communities are compared. We explored (i) which stress and disturbance factors were highly correlated with species richness, (ii) whether the intermediate stress hypothesis (ISH) and the intermediate disturbance hypothesis (IDH) can be applied to alpine ecosystems, and (iii) whether standing crop can be used as an easily measurable surrogate for causal factors determining species richness in the alpine zone. Species numbers and standing crop were determined in 14 alpine plant communities in the Swiss Alps. To quantify the stress and disturbance factors in each community, air temperature, relative air humidity, wind speed, global radiation, UV-B radiation, length of the growing season, soil suction, pH, main soil nutrients, waterlogging, soil movement, number of avalanches, level of denudation, winter dieback, herbivory, wind damage, and days with frost were measured or observed. The present study revealed that 82% of the variance in␣vascular species richness among sites could be explained by just two abiotic factors, daily maximum temperature and soil pH. Daily maximum temperature and pH affect species richness both directly and via their effects on other environmental variables. Some stress and disturbance factors were related to species richness in a monotonic way, others in an unimodal way. Monotonic relationships suggest that the harsher the environment is, the fewer species can survive in such habitats. In cases of unimodal relationships (ISH and IDH) species richness decreases at both ends of the gradients due to the harsh environment and/or the interaction of other environmental factors. Competition and disturbance seemed only to play a secondary role in the form of fine-tuning species richness in specific communities. Thus, we concluded that neither the ISH nor the IDH can be considered useful conceptual models for the alpine zone. Furthermore, we found that standing crop can be used as an easily measurable surrogate for causal factors determining species richness in the alpine zone, even though there is no direct causality.  相似文献   
16.
Over the last decades, production of microalgae and cyanobacteria has been developed for several applications, including novel foods, cosmetic ingredients and more recently biofuel. The sustainability of these promising developments can be hindered by some constraints, such as water and nutrient footprints. This review surveys data on N2-fixing cyanobacteria for biomass production and ways to induce and improve the excretion of ammonium within cultures under aerobic conditions. The nitrogenase complex is oxygen sensitive. Nevertheless, nitrogen fixation occurs under oxic conditions due to cyanobacteria-specific characteristics. For instance, in some cyanobacteria, the vegetative cell differentiation in heterocyts provides a well-adapted anaerobic microenvironment for nitrogenase protection. Therefore, cell cultures of oxygenic cyanobacteria have been grown in laboratory and pilot photobioreactors (Dasgupta et al., 2010; Fontes et al., 1987; Moreno et al., 2003; Nayak & Das, 2013). Biomass production under diazotrophic conditions has been shown to be controlled by environmental factors such as light intensity, temperature, aeration rate, and inorganic carbon concentration, also, more specifically, by the concentration of dissolved oxygen in the culture medium. Currently, there is little information regarding the production of extracellular ammonium by heterocytous cyanobacteria. This review compares the available data on maximum ammonium concentrations and analyses the specific rate production in cultures grown as free or immobilized filamentous cyanobacteria. Extracellular production of ammonium could be coupled, as suggested by recent research on non-diazotrophic cyanobacteria, to that of other high value metabolites. There is little information available regarding the possibility for using diazotrophic cyanobacteria as cellular factories may be in regard of the constraints due to nitrogen fixation.  相似文献   
17.
Tillage is known to potentially affect soil quality in various ways. In this study, a soil quality index (SQI) was developed by quantifying several soil attributes either sensitive or insensitive to physical disturbance, using factor analysis as a dimension reduction technique, in order to discriminate different tillage systems. Soil properties including physical (MWD), chemical (pH, organic C, total N, available P and POM contents) and microbial (MBC, MBN, PCM, PNM and three enzymes) parameters were measured to establish a minimum data set (MDS) for the assessment of overall SQI. The soil attributes were determined on samples (0–20 cm depth) collected under moldboard (MP) and disk (DP) plows as conventional tillage (CT), and rotary (RP) and chisel (CP) plows as reduced tillage (RT) systems with a similar plant C input rate and cover crop over a period of six years (2005–2011) in a semi-arid calcareous soil (Calcixerepts) from Central Iran. Results indicated a clear difference in soil quality among the tillage systems with a significant increase of SQI under RT over time, particularly under CP practices. Although RT improved most soil microbial attributes, not all attributes contributed to SQI because of their close interrelationship. The final SQI consisted only of geometric mean of microbial activity (GMA, the square root of the product of PCM and PNM) and geometric mean of enzyme activity (GME, the cube root of the product of enzyme activities). Soil GME and GMA were found to be as key indicators contributing 55% and 36% to SQI, respectively. Therefore, the GME and GMA were the most important indicators effectively discriminating tillage systems, and could be used to monitor the enhancement of soil quality under RT in this semiarid environment. The influence of tillage year on SQI was greater than that of tillage practices. In conclusion, RT systems were characterized by a higher value of SQI, suggesting a good recovery of soil capacity and functions after abandoning CT in the studied area. Smallholder farmers should therefore be aware of the potential for high soil quality in future as a result of continuing RT systems, especially with surface tillage using CP practices.  相似文献   
18.
Summary Soil tests, plant performance, and plant tissue analyses were used to study the availability of sulfur to wetland rice in 30 Philippine soils. The critical concentrations of available sulfur by the calcium phosphate, lithium chloride, ammonium acetate, and hydrochloric acid extractions were 9, 25, 30, and 5 mg/kg, respectively. The critical total sulfur limits were 0.11% in the shoot at maximum tillering 0.055% in the straw at maturity, and 0.065% in the grain. The critical N:S ratio was 15 in the shoot at maximum tillering, 14 in the straw at maturity, and 26 in the grain. The critical sulfate-sulfur limit was 150 mg/kg in the shoot at maximum tillering and 100 mg/kg in the straw at maturity. The critical sulfate-sulfur/total sulfur percentage ratio was 15% in the shoot at maximum tillering and the straw at maturity. Plant performance, judged by appearance and yield of dry matter, straw, and grain, was generally poorer in the sulfur deficient soils than in the other soils. Although the calcium phosphate and ammonium acetate methods gave a better correlation between plant performance and available sulfur than the others, all four methods separated sulfur-deficient soils from non-deficient ones. The hydrochloric acid method merits further study because it is simple and versatile.  相似文献   
19.
Abstract The outer membrane (OM) structure of Nitrosospira sp. X101 was studied by different electron microscopic techniques and SDS-PAGE. A crystalline outer membrane protein was visible in freeze-etched cells, occasionally seen also in the thin sectioned cells, but was difficult to see in a negatively-stained preparation. The lattice probably consists of large globular protein subunits with a hexagonal arrangement. The molecular weights of the major proteins in the cell envelope are 35 kDa, 40 kDa and 42 kDa.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号